Понятие об электро напряжении. В чем измеряется напряжение? Единица измерения напряжения

Под электрическим напряжением понимают работу, совершаемую электрическим полем для перемещения заряда напряженностью в 1 Кл (кулон) из одной точки проводника в другую.

Как возникает напряжение?

Все вещества состоят из атомов, представляющих собой положительно заряженное ядро, вокруг которого с большой скоростью кружатся более мелкие отрицательные электроны. В общем случае атомы нейтральны, так как количество электронов совпадает с числом протонов в ядре.

Однако если некоторое количество электронов отнять из атомов, то они будут стремиться притянуть такое же их количество, формируя вокруг себя плюсовое поле. Если же добавить электронов, то возникнет их избыток, и отрицательное поле. Формируются потенциалы – положительный и отрицательный.

При их взаимодействии возникнет взаимное притяжение.

Чем больше будет величина различия – разность потенциалов – тем сильнее электроны из материала с их избыточным содержанием будут перетягиваться к материалу с их недостатком. Тем сильнее будет электрическое поле и его напряжение.

Если соединить потенциалы с различными зарядами проводников, то возникнет электрический – направленное движение носителей заряда, стремящееся устранить разницу потенциалов. Для перемещения по проводнику зарядов силы электрического поля совершают работу, которая и характеризуется понятием электрического напряжения.

В чем измеряется

Температуры;

Виды напряжения

Постоянное напряжение

Напряжение в электрической сети постоянно, когда с одной ее стороны всегда положительный потенциал, а с другой – отрицательный. Электрический в этом случае имеет одно направление и является постоянным.

Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах.

При подключении нагрузки в цепь постоянного тока важно не перепутать контакты, иначе устройство может выйти из строя. Классическим примером источника постоянного напряжения являются батарейки. Применяют сети , когда не требуется передавать энергию на большие расстояния: во всех видах транспорта – от мотоциклов до космических аппаратов, в военной технике, электроэнергетике и телекоммуникациях, при аварийном электрообеспечении, в промышленности (электролиз, выплавка в дуговых электропечах и т.д.).

Переменное напряжение

Если периодически менять полярность потенциалов, либо перемещать их в пространстве, то и электрический устремится в обратном направлении. Количество таких изменений направления за определенное время показывает характеристика, называемая частотой. Например, стандартные 50 означают, что полярность напряжения в сети меняется за секунду 50 раз.


Напряжение в электрических сетях переменного тока является временной функцией.

Чаще всего используется закон синусоидальных колебаний.

Так получается за счет того, что возникает в катушке асинхронных двигателей за счет вращения вокруг нее электромагнита. Если развернуть вращение по времени, то получается синусоида.

Состоит из четырех проводов – трех фазных и одного нулевого. напряжение между проводами нулевым и фазным равно 220 В и называется фазным. Между фазными напряжение также существует, называется линейным и равно 380 В (разность потенциалов между двумя фазными проводами). В зависимости от вида подключения в трехфазной сети можно получить или фазное напряжение, или линейное.

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения - через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения . Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые - в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).


Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения - последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами I в1 и I в2 , индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) - параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 - напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 337. Ферродинамический счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,- буквами Г.

Измерение тока. Для измерения тока в цепи амперметр 2 (рис. 332, а) или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Для расширения пределов измерения амперметров, предназначенных для работы в цепях постоянного тока, их включают в цепь параллельно шунту 4 (рис. 332,б). При этом через прибор проходит только часть I А измеряемого тока I, обратно пропорциональная его сопротивлению R А. Бо льшая часть I ш этого тока проходит через шунт. Прибор измеряет падение напряжения на шунте, зависящее от проходящего через шунт тока, т. е. используется в качестве милливольтметра. Шкала прибора градуируется в амперах. Зная сопротивления прибора R A и шунта R ш можно по току I А, фиксируемому прибором, определить измеряемый ток:

I = I А (R А +R ш)/R ш = I А n (105)

где n = I/I А = (R A + R ш)/R ш - коэффициент шунтирования. Его обычно выбирают равным или кратным 10. Сопротивление шунта, необходимое для измерения тока I, в n раз большего, чем ток прибора I А,

R ш = R A /(n-1) (106)

Конструктивно шунты либо монтируют в корпус прибора (шунты на токи до 50 А), либо устанавливают вне его и соединяют с прибором проводами. Если прибор предназначен для постоянной работы с шунтом, то шкала его градуируется сразу в значениях измеряемого тока с учетом коэффициента шунтирования и никаких расчетов для определения тока выполнять не требуется. В случае применения наружных (отдельных от приборов) шунтов на них указывают номинальный ток, на который они рассчитаны, и номинальное напряжение на зажимах (калиброванные шунты). Согласно стандартам это напряжение может быть равно 45, 75, 100 и 150 мВ. Шунты подбирают к приборам так, чтобы при номинальном напряжении на зажимах шунта стрелка прибора отклонялась на всю шкалу. Следовательно, номинальные напряжения прибора и шунта должны быть одинаковыми. Имеются также индивидуальные шунты, предназначенные для работы с определенным прибором. Шунты делят на пять классов точности (0,02; 0,05; 0,1; 0,2; 0,5). Обозначение класса соответствует допустимой погрешности в процентах.

Для того чтобы повышение температуры шунта при прохождении по нему тока не оказывало влияния на показания прибора, шунты изготовляют из материалов с большим удельным сопротивлением и малым температурным коэффициентом (константан, манганин, никелин и пр.). Для уменьшения влияния температуры на показания амперметра последовательно с катушкой прибора в некоторых случаях включают добавочный резистор из констан-тана или другого подобного материала.

Рис. 332. Схемы для измерения тока (а, б) и напряжения (в, г)

Измерение напряжения. Для измерения напряжения U, действующего между какими-либо двумя точками электрической цепи, вольтметр 2 (рис. 332, в) присоединяют к этим точкам, т. е. параллельно источнику 1 электрической энергии или приемнику 3.

Для того чтобы включение вольтметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, вольтметры выполняют с большим сопротивлением. Поэтому практически можно пренебрегать проходящим по вольтметру током.

Для расширения пределов измерения вольтметров последовательно с обмоткой прибора включают добавочный резистор 4 (R д) (рис. 332,г). При этом на прибор приходится лишь часть U v измеряемого напряжения U, пропорциональная сопротивлению прибора R v .

Зная сопротивление добавочного резистора и вольтметра, можно по значению напряжения U v , фиксируемого вольтметром, определить напряжение, действующее в цепи:

U = (R v +R д )/R v * U v = nU v (107)

Величина n = U/U v =(R v +R д)/R v показывает, во сколько раз измеряемое напряжение U больше напряжения U v , приходящегося на прибор, т. е. во сколько раз увеличивается предел измерения напряжения вольтметром при применении добавочного резистора.

Сопротивление добавочного резистора, необходимое для измерения напряжения U, в п раз большего напряжения прибора Uv, определяется по формуле R д =(n- 1) R v .

Добавочный резистор может встраиваться в прибор и одновременно использоваться для уменьшения влияния температуры окружающей среды на показания прибора. Для этой цели резистор выполняется из материала, имеющего малый температурный коэффициент, и его сопротивление значительно превышает сопротивление катушки, вследствие чего общее сопротивление прибора становится почти независимым от изменения температуры. По точности добавочные резисторы подразделяются на те же классы точности, что и шунты.

Делители напряжения. Для расширения пределов измерения вольтметров применяют также делители напряжения. Они позволяют уменьшить подлежащее измерению напряжение до значения, соответствующего номинальному напряжению данного вольтметра (предельного напряжения на его шкале). Отношение входного напряжения делителя U 1 к выходному U 2 (рис. 333, а) называетсякоэффициентом деления . При холостом ходе U 1 /U 2 = (R 1 +R 2)/R2 = 1 + R 1 /R 2 . В делителях напряжения это отношение может быть выбрано равным 10, 100, 500 и т. д. в зависимости от того, к каким

Рис. 333. Схемы включения делителей напряжения

выводам делителя подключен вольтметр (рис. 333,б). Делитель напряжения вносит малую погрешность в измерения только в том случае, если сопротивление вольтметра R v достаточно велико (ток, проходящий через делитель, мал), а сопротивление источника, к которому подключен делитель, мало.

Измерительные трансформаторы. Для включения электроизмерительных приборов в цепи переменного тока служат измерительные трансформаторы, обеспечивающие безопасность обслуживающего персонала при выполнении электрических измерений в цепях высокого напряжения. Включение электроизмерительных приборов в эти цепи без таких трансформаторов запрещается правилами техники безопасности. Кроме того, измерительные трансформаторы расширяют пределы измерения приборов, т. е. позволяют измерять большие токи и напряжения с помощью несложных приборов, рассчитанных для измерения малых токов и напряжений.

Измерительные трансформаторы подразделяют на трансформаторы напряжения и трансформаторы тока. Трансформатор напряжения 1 (рис. 334, а) служит для подключения вольтметров и других приборов, которые должны реагировать на напряжение. Его выполняют, как обычный двухобмоточный понижающий трансформатор: первичную обмотку подключают к двум точкам, между которыми требуется измерить напряжение, а вторичную - к вольтметру 2.

На схемах измерительный трансформатор напряжения изображают как обычный трансформатор (на рис. 334, а показано в круге).

Так как сопротивление обмотки вольтметра, подключаемого к трансформатору напряжения, велико, трансформатор практически работает в режиме холостого хода, и можно с достаточной степенью точности считать, что напряжения U 1 и U 2 на первичной и вторичной обмотках будут прямо пропорциональны числу витков? 1 и? 2 обеих обмоток трансформатора, т. е.

U 1 /U 2 = ? 1 /? 2 = n (108)

Таким образом, подобрав соответствующее число витков? 1 и? 2 обмоток трансформатора, можно измерять высокие напряжения, подавая на электроизмерительный прибор небольшие напряжения.

Напряжение U 1 может быть определено умножением измеренного вторичного напряжения U 2 на коэффициент трансформации трансформатора n.

Вольтметры, предназначенные для постоянной работы с трансформаторами напряжения, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого напряжения могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один выэод его вторичной обмотки и стальной кожух трансформатора должны быть заземлены.

Трансформатор тока 3 (рис. 334,б) служит для подключения амперметров и других приборов, которые должны реагировать на протекающий по цепи переменный ток. Его выполняют в виде

Рис. 334. Включение электроизмерительных приборов посредством измерительных трансформаторов напряжения (а) и тока (б)

обычного двухобмоточного повышающего трансформатора; первичную обмотку включают последовательно в цепь измеряемого тока, к вторичной обмотке подключают амперметр 4.

Схемное обозначение измерительных трансформаторов тока показано на рис. 334, б в круге.

Так как сопротивление обмотки амперметра, подключаемого к трансформатору тока, обычно мало, трансформатор практически работает в режиме короткого замыкания, и с достаточной степенью точности можно считать, что токи I 1 и I 2 , проходящие по его обмоткам, будут обратно пропорциональны числу витков? 1 и? 2 этих обмоток, т.е.

I 1 /I 2 = ? 1 /? 2 = n (109)

Следовательно, подобрав соответствующим образом число витков? 1 и? 2 обмоток трансформатора, можно измерять большие токи I 1 , пропуская через электроизмерительный прибор малые токи I 2 . Ток I 1 может быть при этом определен умножением измеренного вторичного тока I 2 на величину n.

Амперметры, предназначенные для постоянной работы совместно с трансформаторами тока, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого тока I 1 могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один из зажимов вторичной обмотки и кожух трансформатора заземляют.

На э. п. с. применяют так называемые проходные трансформаторы тока (рис. 335). В таком трансформаторе магнитопровод 3 и вторичная обмотка 2 смонтированы на проходном изоляторе 4, служащем для ввода высокого напряжения в кузов, а роль первичной обмотки трансформатора выполняет медный стержень 1, проходящий внутри изолятора.

Условия работы трансформаторов тока отличаются от обычных. Например, размыкание вторичной обмотки трансформатора тока при включенной первичной обмотке недопустимо, так как это вызовет значительное увеличение магнитного потока и, как следствие, температуры сердечника и обмотки трансформатора, т. е. выход его из строя. Кроме того, в разомкнутой вторичной обмотке трансформатора может индуцироваться большая э. д. с, опасная для персонала, производящего измерения.

При включении приборов посредством измерительных трансформаторов возникают погрешности двух видов: погрешность в коэффициенте трансформации и угловая погрешность (при изменениях напряжения или тока отношенияU 1 /U 2 и I 1 /I 2 несколько изменяются и угол сдвига фаз между первичным и вторичным напряжениями и токами отклоняется от 180°). Эти погрешности возрастают при нагрузке трансформатора свыше номинальной. Угловая погрешность оказывает влияние на результаты измере-

Рис. 335. Проходной измерительный трансформатор тока

ний приборами, показания которых зависят от угла сдвига фаз между напряжением и током (например, ваттметров, счетчиков электрической энергии и пр.). В зависимости от допускаемых погрешностей измерительные трансформаторы подразделяют по классам точности. Класс точности (0,2; 0,5; 1 и т. д.) соответствует наибольшей допускаемой погрешности в коэффициенте трансформации в процентах от его номинального значения.

Измерение методом амперметра и вольтметра. Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток I x , но и ток I v , протекающий через вольтметр. Поэтому сопротивление

R x = U / (I – U/R v ) (110)

где R v - сопротивление вольтметра.

При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра U A = IR А. Поэтому

R x = U/I – R А (111)

где R А - сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений - схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током I v , а во второй - падением напряжения UА, будет невелика по сравнению с током I x и напряжением U x .

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением R x (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания - в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в та-

Рис. 339. Схемы для измерения сопротивления методом амперметра и вольтметра

Рис. 340. Мостовые схемы постоянного тока, применяемые для измерения сопротивлений

ком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

R x = (R 1 /R 2)R 3 (112)

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление R x (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 - гальванометр, а к зажимам 5 и 6 - источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление R x отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением R x и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями R x и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

R x = R 0 R 1 /R 4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления R x . Это позволяет проградуировать шкалу гальванометра в единицах сопротивления R x или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением R x (рис. 341) и добавочным резистором R Д в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора R Д ток в цепи зависит только от сопротивления R x . Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением R x подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами. Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 342), показания кото-

Рис. 341. Схема включения омметра

Рис. 342. Устройство мегаомметра

рого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Последовательно с одной катушкой включают добавочный резистор R д, в цепь другой катушки - резистор сопротивлением R x .

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной

Рис. 343. Общий вид мегаомметра (а) и его упрощенная схема (б)

части логометра зависит от отношения I1/I2. Следовательно, при изменении R x будет изменяться угол? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 343, а).

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 343,б), а другой - к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку - с зажимом Л.

Измерение тока. Для измерения тока в цепи амперметр 2 (рис. 332, а) или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Для расширения пределов измерения амперметров, предназначенных для работы в цепях постоянного тока, их включают в цепь параллельно шунту 4 (рис. 332,б). При этом через прибор проходит только часть I А измеряемого тока I, обратно пропорциональная его сопротивлению R А. Бо льшая часть I ш этого тока проходит через шунт. Прибор измеряет падение напряжения на шунте, зависящее от проходящего через шунт тока, т. е. используется в качестве милливольтметра. Шкала прибора градуируется в амперах. Зная сопротивления прибора R A и шунта R ш можно по току I А, фиксируемому прибором, определить измеряемый ток:

I = I А (R А +R ш)/R ш = I А n (105)

где n = I/I А = (R A + R ш)/R ш - коэффициент шунтирования. Его обычно выбирают равным или кратным 10. Сопротивление шунта, необходимое для измерения тока I, в n раз большего, чем ток прибора I А,

R ш = R A /(n-1) (106)

Конструктивно шунты либо монтируют в корпус прибора (шунты на токи до 50 А), либо устанавливают вне его и соединяют с прибором проводами. Если прибор предназначен для постоянной работы с шунтом, то шкала его градуируется сразу в значениях измеряемого тока с учетом коэффициента шунтирования и никаких расчетов для определения тока выполнять не требуется. В случае применения наружных (отдельных от приборов) шунтов на них указывают номинальный ток, на который они рассчитаны, и номинальное напряжение на зажимах (калиброванные шунты). Согласно стандартам это напряжение может быть равно 45, 75, 100 и 150 мВ. Шунты подбирают к приборам так, чтобы при номинальном напряжении на зажимах шунта стрелка прибора отклонялась на всю шкалу. Следовательно, номинальные напряжения прибора и шунта должны быть одинаковыми. Имеются также индивидуальные шунты, предназначенные для работы с определенным прибором. Шунты делят на пять классов точности (0,02; 0,05; 0,1; 0,2; 0,5). Обозначение класса соответствует допустимой погрешности в процентах.

Для того чтобы повышение температуры шунта при прохождении по нему тока не оказывало влияния на показания прибора, шунты изготовляют из материалов с большим удельным сопротивлением и малым температурным коэффициентом (константан, манганин, никелин и пр.). Для уменьшения влияния температуры на показания амперметра последовательно с катушкой прибора в некоторых случаях включают добавочный резистор из констан-тана или другого подобного материала.

Измерение напряжения. Для измерения напряжения U, действующего между какими-либо двумя точками электрической цепи, вольтметр 2 (рис. 332, в) присоединяют к этим точкам, т. е. параллельно источнику 1 электрической энергии или приемнику 3.

Для того чтобы включение вольтметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, вольтметры выполняют с большим сопротивлением. Поэтому практически можно пренебрегать проходящим по вольтметру током.

Для расширения пределов измерения вольтметров последовательно с обмоткой прибора включают добавочный резистор 4 (R д) (рис. 332,г). При этом на прибор приходится лишь часть U v измеряемого напряжения U, пропорциональная сопротивлению прибора R v .

Зная сопротивление добавочного резистора и вольтметра, можно по значению напряжения U v , фиксируемого вольтметром, определить напряжение, действующее в цепи:

U = (R v +R д )/R v * U v = nU v (107)

Величина n = U/U v =(R v +R д)/R v показывает, во сколько раз измеряемое напряжение U больше напряжения U v , приходящегося на прибор, т. е. во сколько раз увеличивается предел измерения напряжения вольтметром при применении добавочного резистора.

Сопротивление добавочного резистора, необходимое для измерения напряжения U, в п раз большего напряжения прибора Uv, определяется по формуле R д =(n- 1) R v .

Добавочный резистор может встраиваться в прибор и одновременно использоваться для уменьшения влияния температуры окружающей среды на показания прибора. Для этой цели резистор выполняется из материала, имеющего малый температурный коэффициент, и его сопротивление значительно превышает сопротивление катушки, вследствие чего общее сопротивление прибора становится почти независимым от изменения температуры. По точности добавочные резисторы подразделяются на те же классы точности, что и шунты.

Делители напряжения. Для расширения пределов измерения вольтметров применяют также делители напряжения. Они позволяют уменьшить подлежащее измерению напряжение до значения, соответствующего номинальному напряжению данного вольтметра (предельного напряжения на его шкале). Отношение входного напряжения делителя U 1 к выходному U 2 (рис. 333, а) называется коэффициентом деления . При холостом ходе U 1 /U 2 = (R 1 +R 2)/R2 = 1 + R 1 /R 2 . В делителях напряжения это отношение может быть выбрано равным 10, 100, 500 и т. д. в зависимости от того, к каким

выводам делителя подключен вольтметр (рис. 333,б). Делитель напряжения вносит малую погрешность в измерения только в том случае, если сопротивление вольтметра R v достаточно велико (ток, проходящий через делитель, мал), а сопротивление источника, к которому подключен делитель, мало.

Измерительные трансформаторы. Для включения электроизмерительных приборов в цепи переменного тока служат измерительные трансформаторы, обеспечивающие безопасность обслуживающего персонала при выполнении электрических измерений в цепях высокого напряжения. Включение электроизмерительных приборов в эти цепи без таких трансформаторов запрещается правилами техники безопасности. Кроме того, измерительные трансформаторы расширяют пределы измерения приборов, т. е. позволяют измерять большие токи и напряжения с помощью несложных приборов, рассчитанных для измерения малых токов и напряжений.

Измерительные трансформаторы подразделяют на трансформаторы напряжения и трансформаторы тока. Трансформатор напряжения 1 (рис. 334, а) служит для подключения вольтметров и других приборов, которые должны реагировать на напряжение. Его выполняют, как обычный двухобмоточный понижающий трансформатор: первичную обмотку подключают к двум точкам, между которыми требуется измерить напряжение, а вторичную - к вольтметру 2.

На схемах измерительный трансформатор напряжения изображают как обычный трансформатор (на рис. 334, а показано в круге).

Так как сопротивление обмотки вольтметра, подключаемого к трансформатору напряжения, велико, трансформатор практически работает в режиме холостого хода, и можно с достаточной степенью точности считать, что напряжения U 1 и U 2 на первичной и вторичной обмотках будут прямо пропорциональны числу витков? 1 и? 2 обеих обмоток трансформатора, т. е.

U 1 /U 2 = ? 1 /? 2 = n (108)

Таким образом, подобрав соответствующее число витков? 1 и? 2 обмоток трансформатора, можно измерять высокие напряжения, подавая на электроизмерительный прибор небольшие напряжения.

Напряжение U 1 может быть определено умножением измеренного вторичного напряжения U 2 на коэффициент трансформации трансформатора n.

Вольтметры, предназначенные для постоянной работы с трансформаторами напряжения, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого напряжения могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один выэод его вторичной обмотки и стальной кожух трансформатора должны быть заземлены.

Трансформатор тока 3 (рис. 334,б) служит для подключения амперметров и других приборов, которые должны реагировать на протекающий по цепи переменный ток. Его выполняют в виде

обычного двухобмоточного повышающего трансформатора; первичную обмотку включают последовательно в цепь измеряемого тока, к вторичной обмотке подключают амперметр 4.

Схемное обозначение измерительных трансформаторов тока показано на рис. 334, б в круге.

Так как сопротивление обмотки амперметра, подключаемого к трансформатору тока, обычно мало, трансформатор практически работает в режиме короткого замыкания, и с достаточной степенью точности можно считать, что токи I 1 и I 2 , проходящие по его обмоткам, будут обратно пропорциональны числу витков? 1 и? 2 этих обмоток, т.е.

I 1 /I 2 = ? 1 /? 2 = n (109)

Следовательно, подобрав соответствующим образом число витков? 1 и? 2 обмоток трансформатора, можно измерять большие токи I 1 , пропуская через электроизмерительный прибор малые токи I 2 . Ток I 1 может быть при этом определен умножением измеренного вторичного тока I 2 на величину n.

Амперметры, предназначенные для постоянной работы совместно с трансформаторами тока, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого тока I 1 могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один из зажимов вторичной обмотки и кожух трансформатора заземляют.

На э. п. с. применяют так называемые проходные трансформаторы тока (рис. 335). В таком трансформаторе магнитопровод 3 и вторичная обмотка 2 смонтированы на проходном изоляторе 4, служащем для ввода высокого напряжения в кузов, а роль первичной обмотки трансформатора выполняет медный стержень 1, проходящий внутри изолятора.

Условия работы трансформаторов тока отличаются от обычных. Например, размыкание вторичной обмотки трансформатора тока при включенной первичной обмотке недопустимо, так как это вызовет значительное увеличение магнитного потока и, как следствие, температуры сердечника и обмотки трансформатора, т. е. выход его из строя. Кроме того, в разомкнутой вторичной обмотке трансформатора может индуцироваться большая э. д. с, опасная для персонала, производящего измерения.

При включении приборов посредством измерительных трансформаторов возникают погрешности двух видов: погрешность в коэффициенте трансформации и угловая погрешность (при изменениях напряжения или тока отношенияU 1 /U 2 и I 1 /I 2 несколько изменяются и угол сдвига фаз между первичным и вторичным напряжениями и токами отклоняется от 180°). Эти погрешности возрастают при нагрузке трансформатора свыше номинальной. Угловая погрешность оказывает влияние на результаты измере-

ний приборами, показания которых зависят от угла сдвига фаз между напряжением и током (например, ваттметров, счетчиков электрической энергии и пр.). В зависимости от допускаемых погрешностей измерительные трансформаторы подразделяют по классам точности. Класс точности (0,2; 0,5; 1 и т. д.) соответствует наибольшей допускаемой погрешности в коэффициенте трансформации в процентах от его номинального значения.

Содержание:

Электрический ток характеризуется такими величинами, как сила тока, напряжение и сопротивление, связанными между собой. Прежде чем рассматривать вопрос, в чем измеряется напряжение необходимо точно выяснить, что это за величина, и какова ее роль в образовании тока.

Как действует напряжение

Общее понятие электрического тока заключается в направленном движении заряженных частиц. Эти частицы представляют собой электроны, перемещение которых происходит под действием электрического поля. Чем больше зарядов нужно переместить, тем большая работа совершается полем. На эту работу влияет не только сила тока, но и напряжение.

Физический смысл этой величины заключается в том, что работа тока на каком-либо участке цепи соотносится с величиной заряда, который проходит по данному участку. В процессе этой работы положительный заряд перемещается из точки, где имеется небольшой потенциал, в точку с большим значением потенциала. Таким образом, напряжение определяется в виде или электродвижущей силы, а сама работа является энергией.

Работа электрического тока измеряется в джоулях (Дж), а величиной электрического заряда является кулон (Кл). В результате, напряжение представляет собой отношение 1 Дж/Кл. Полученная единица напряжения называется вольтом.

Чтобы наглядно объяснить физический смысл напряжения, нужно обратиться к примеру шланга, наполненного водой. В данном случае, объем воды будет играть роль силы тока, а ее давление будет эквивалентно напряжению. При движении воды без наконечника, она свободно и в большом количестве перемещается по шлангу, создавая невысокое давление. Если же конец шланга прижать пальцем, то произойдет уменьшение объема при одновременном повышении давления воды. Сама струя будет перемещаться на значительно большее расстояние.

В электричестве получается то же самое. Сила тока определяется количеством или объемом электронов, перемещающихся по проводнику. Значение напряжения, по сути, является силой, с которой происходит проталкивание этих электронов. Отсюда следует, что при условии одинакового напряжения, проводник, проводящий большее количество тока, должен обладать и большим диаметром.

Единица измерения напряжения

Напряжение может быть постоянным или переменным, в зависимости от тока. Эта величина может обозначаться в виде буквы В (русское обозначение) или V, соответствующее международному обозначению. Для обозначения переменного напряжения применяется значок «~», который ставится перед буквой. Для постоянного напряжения существует знак «-», однако на практике он почти не применяется.

Рассматривая вопрос, в чем измеряется напряжение, следует помнить, что для этого существуют не только вольты. Большие величины измеряются в киловольтах (кВ) и мегавольтах (мВ), что означает соответственно 1 тысячу и 1 миллион вольт.

Как измерить напряжение и ток

В электротехнике для описания процессов, протекающих внутри электрических цепей, используются термины «ток», «напряжение» и «сопротивление». Каждый из них имеет собственное назначение со специфическими характеристиками.

Электрический ток

Слово используется для характеристики движения заряженных частиц (электроны, дырки, катионы и анионы) через определенную среду вещества. Направление и количество носителей заряда определяет тип и силу тока.

Основные характеристики тока, влияющие на его практическое применение

Обязательным требованием для протекания зарядов является наличие цепи или, другим словами, замкнутого контура, создающего условия для их передвижения. Если внутри движущихся частиц образуется разрыв, то их направленное перемещение сразу прекращается.

На этом принципе работают все выключатели и защиты, используемые в электрике. Они создают разделение подвижными контактами токопроводящих частей между собой и этим действием прерывают протекание электрического тока, отключая прибор.

В энергетике наибольшее распространение получил метод создания электрического тока за счет передвижения электронов внутри металлов, изготовленных в виде проводов, шин или других токопроводящих частей.

Кроме этого способа также используется создание тока внутри:

1. газов и жидкостей-электролитов за счет движения электронов или катионов и анионов - ионов с положительными и отрицательными знаками заряда;

2. среды из вакуума, воздуха и газов при условии передвижения электронов, вызванного явлением термоэлектронной эмиссии;

3. полупроводниковых материалов вследствие перемещения электронов и дырок.

Электрический ток может возникнуть при:

    приложении к заряженным частицам внешней разности электрических потенциалов;

    нагреве проводников, не являющихся в данный момент сверхпроводниками;

    протекании химических реакций, связанных с выделением новых веществ;

    воздействии приложенного на проводник магнитного поля.

Форма сигнала электрического тока может быть:

1. постоянной в виде прямой линии на временном графике;

2. переменной синусоидальной гармоникой, хорошо описываемой основными тригонометрическими соотношениями;

3. меандром, грубо напоминающим синусоиду, но с резкими, ярко выраженными углами, которые в отдельных случаях могут быть хорошо сглажены;

4. пульсирующей, когда направление остается одним и тем же без изменения, а амплитуда колеблется периодически от нулевого до максимального значения по вполне определенному закону.


Электрический ток может совершать полезную для человека работу, когда он:

    преобразуется в световое излучение;

    создает нагрев тепловых элементов;

    совершает механическую работу за счет притяжения или отталкивания подвижных якорей либо вращения роторов с приводами, закрепленных в подшипниках;

    формирует электромагнитное излучение и в некоторых других случаях.

При прохождении электрического тока по проводам может создаваться вред, вызываемый:

    излишним нагревом токонесущих цепей и контактов;

    образованием в магнитопроводах электрических машин;

    излучением электроэнергии в окружающую среду и некоторыми подобными явлениями.

Конструкторы электрических приборов и разработчики различных схем учитывают перечисленные возможности электрического тока в своих устройствах. Например, вредное воздействие вихревых токов в трансформаторах, двигателях и генераторах уменьшается за счет шихтовки сердечников, используемых для пропускания магнитных потоков. В то же время вихревой ток успешно применяют для разогрева среды внутри электрических печей и микроволновок, работающих на индукционном принципе.

Переменный электрический ток с синусоидальной формой сигнала может иметь разную частоту колебаний в единицу времени - секунду. Промышленная частота электроустановок в разных странах стандартизирована числами 50 или 60 герц. Для других целей электротехники и радиодела применяются сигналы:

    низкочастотные, имеющие меньшие значения;

    высокочастотные, значительно превышающие спектр промышленных устройств.

Обычно принято, что электрический ток создается движением заряженных частиц внутри определенной макроскопической среды и его называют током проводимости . Однако, может возникнуть и другой вид тока, называемый конвекционным, когда передвигаются макроскопические заряженные тела, например, дождевые капли.

Как образуется электрический ток в металлах

Перемещение электронов под действием постоянно приложенной к ним силы вполне можно сравнить со снижением парашютиста с раскрытым куполом. В обоих случаях происходит равноускоренное движение.

Парашютист движется за счет притяжения к земле силой тяжести, которой противостоит сила сопротивления воздуха. На электроны воздействует приложенная к ним сила , а мешают его движению непрерывные соударения с другими частицами - ионами кристаллических решеток, за счет чего гасится часть воздействия приложенной силы.


В обоих случаях средняя скорость парашютиста и перемещения электронов достигает постоянной величины.

При этом создается довольно уникальная ситуация, когда скорость:

    собственного передвижения одного электрона определяется величиной порядка 0,1 миллиметра в секунду;

    протекание электрического тока соответствует значительно большей величине - скорости распространения световых волн: около 300 тысяч километров в секунду.

Таким образом, создается в том месте, где к электронам приложено напряжение, и в результате оно начинает перемещаться со скоростью света внутри токопроводящей среды.

При движении электронов внутри кристаллической решетки металла возникает еще одна интересная закономерность: его сталкивание происходит примерно с каждым десятым встречным ионом. То есть, около 90% столкновений с ионами он успешно избегает.


Объяснить это явление помогают законы не только фундаментальной классической физики, как принято понимать большинством людей, а действующие дополнительные закономерности, описанные теорией квантовой механики.

Если кратко выразить их действие, то можно представить, что передвижению электронов внутри металлов мешают тяжелые «качающиеся» большие ионы, которые оказывают дополнительное сопротивление.


Особенно этот эффект хорошо заметен при нагреве металлов, когда «качания» тяжелых ионов увеличиваются и снижают электрическую проводимость кристаллических решеток проводников.

Поэтому при нагреве металлов у них всегда повышается электрическое сопротивление, а при охлаждении - увеличивается проводимость. Когда температура металла снижается до критических значений, приближенных к величине абсолютного нуля, во многих из них возникает явление сверхпроводимости.

Электрический ток, в зависимости от своей величины, способен совершать различную работу. Для количественной оценки его возможностей принята величина, называемая силой тока. Ее размерностью в международной системе измерений является 1 ампер. Для обозначения силы тока в технической литературе принят индекс «I».

Электрическое напряжение

Этот термин используется как характеристика физической величины, выражающей затраченную работу по переносу пробного единичного электрического заряда из одной точки в другую без изменения характеров размещения остальных зарядов на действующих источниках полей.

Поскольку начальная и конечная точки обладают различными потенциалами энергии, то работа на перемещение заряда, или напряжение, совпадает с соотношением разности этих потенциалов.

В зависимости от протекающих токов используются различные термины и способы вычисления напряжения. Оно может быть:

1. постоянным - в цепях электростатики и постоянного тока;

2. переменным - в схемах с переменными и синусоидальными токами.

Для второго случая используются такие дополнительные характеристики и разновидности напряжения, как:

    амплитуда - наибольшее отклонение от нулевого положения оси абсцисс;

    мгновенная величина, которая выражается в конкретный момент времени;

    действующее, эффективное или, называемое по-другому, среднеквадратичное значение, определяемое по совершаемой активной работе одного полупериода;

    средневыпрямленное, рассчитываемое по модулю выпрямленного значения одного периода гармоники.


Для количественной оценки напряжения введена международная единица 1 вольт, а ее обозначением стал символ «U».

При транспортировке электрической энергии по проводам воздушных линий конструкция опор и их габариты зависят от значения используемого напряжения. Его величину между проводами фаз называют линейной, а относительно каждого провода и землей - фазной.

Это правило применяется ко всем видам воздушных линий.


В бытовых электрических сетях нашей страны стандартом принято трехфазное напряжение 380/220 вольт.

Электрическое сопротивление

Термин применяется для характеристики свойств вещества ослаблять прохождение через него электрического тока. При этом могут выбираться разные среды, изменяться температура вещества или его габариты.

У цепей постоянного тока сопротивление совершает активную работу, поэтому его называют активным. Оно для любого участка прямо пропорционально приложенному напряжению и обратно пропорционально - проходящему току.

В цепях переменного тока введены понятия:

    импеданса;

    волнового сопротивления.

Электрический импеданс по-другому называют комплексным или полным сопротивлением с составляющими частями:

    активной;

    реактивной.

Реактивное сопротивление, в свою очередь, может быть:

    емкостным;

    индуктивным.

Соотношения между составляющими импеданса описываются треугольником сопротивлений .


При проведении расчетов электродинамики волновое сопротивление ЛЭП определяется соотношением напряжения от падающей волны к величине тока, проходящей по линии волны.

Величиной сопротивления принята международная единица измерения в 1 Ом.

Взаимосвязь тока, напряжения, сопротивления

Классическим примеров выражения соотношений между этими характеристиками является сравнение с гидравлической схемой, в которой сила движения потока жизни (аналог - величина тока) зависит от значения приложенной к поршню силы (созданного напряжения) и характера магистралей потока, выполненных сужениями (сопротивлением).

Для замера основных электрических величин электроэнергии применяют амперметры, вольтметры и омметры.


Амперметр замеряет ток, проходящий по цепи. Поскольку на всем замкнутом участке он не изменяется, то амперметр врезают в любом месте между источником напряжения и потребителем, создавая прохождение зарядов через измерительную головку прибора.

Вольтметром измеряют напряжение на клеммах подключенного к источнику тока потребителя.

Замеры сопротивления омметром могут выполняться только на обесточенном потребителе. Это объясняется тем, что омметр выдает калиброванное напряжение и замеряет ток, проходящий по измерительной головке, который переводится в Омы за счет деления напряжения на полученное значение тока.

Любое подключение маломощного постороннего напряжения при выполнении измерения создаст дополнительные токи и исказит результат. Учитывая, что внутренние цепи омметра изготавливаются маломощными, то при ошибочных замерах сопротивления при поданном постороннем напряжении довольно часто прибор выходит из строя за счет того, что у него выгорает внутренняя схема.

Знание основных характеристик тока, напряжения, сопротивления и зависимостей между ними позволяет электрикам успешно выполнять свою работу и надежно эксплуатировать электрические системы, а допускаемые ошибки очень часто заканчиваются несчастными случаями и травмами.