Общее уравнение фотосинтеза растений. пути и энергетика фотосинтеза глюкозы из с02. крахмал и целлюлоза. цикл кальвина. Общее и парциальные уравнения фотосинтеза Световая фаза фотосинтеза

Процесс преобразования лучистой энергии Солнца в химическую с использованием последней в синтезе углеводов из углекислого газа. Это единственный путь улавливания солнечной энергии и использования ее для жизни на нашей планете.

Улавливание и преобразование солнечной энергии осуществляют многообразные фотосинтезирующие организмы (фотоавтотрофы). К ним относятся многоклеточные организмы (высшие зеленые растения и низшие их формы - зеленые, бурые и красные водоросли) и одноклеточные (эвгленовые, динофлагелляты и диатомовые водоросли). Большую группу фотосинтезирующих организмов составляют прокариоты - сине-зеленые водоросли, зеленые и пурпурные бактерии. Примерно половина работы по фотосинтезу на Земле осуществляется высшими зелеными растениями, а остальная половина - главным образом одноклеточными водорослями.

Первые представления о фотосинтезе были сформированы в 17 веке. В дальнейшем, по мере появления новых данных, эти представления многократно изменялись [показать] .

Развитие представлений о фотосинтезе

Начало изучению фотосинтеза было положено в 1630 году, когда ван Гельмонт показал, что растения сами образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей, в котором росла ива, и само дерево, он показал, что в течение 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Ван Гельмонт пришел к заключению, что остальную часть пищи растение получило из воды, которой поливали дерево. Теперь мы знаем, что основным материалом для синтеза служит двуокись углерода, извлекаемая растением из воздуха.

В 1772 году Джозеф Пристли показал, что побег мяты "исправляет" воздух, "испорченный" горящей свечой. Семь лет спустя Ян Ингенхуз обнаружил, что растения могут "исправлять" плохой воздух только находясь на свету, причем способность растений "исправлять" воздух пропорциональна ясности дня и длительности пребывания растений на солнце. В темноте же растения выделяют воздух, "вредный для животных".

Следующей важной ступенью в развитии знаний о фотосинтезе были опыты Соссюра, проведенные в 1804 году. Взвешивая воздух и растения до фотосинтеза и после, Соссюр установил, что увеличение сухой массы растения превышало массу поглощенной им из воздуха углекислоты. Соссюр пришел к выводу, что другим веществом, участвовавшим в увеличении массы, была вода. Таким образом, 160 лет назад процесс фотосинтеза представляли себе следующим образом:

H 2 O + CO 2 + hv -> C 6 H 12 O 6 + O 2

Вода + Углекислота + Солнечная энергия ----> Органическое вещество + Кислород

Ингенхуз предположил, что роль света в фотосинтезе заключается в расщеплении углекислоты; при этом происходит выделение кислорода, а освободившийся "углерод" используется для построения растительных тканей. На этом основании живые организмы были разделены на зеленые растения, которые могут использовать солнечную энергию для "ассимиляции" углекислоты, и остальные организмы, не содержащие хлорофилла, которые не могут использовать энергию света и не способны ассимилировать CO 2 .

Этот принцип разделения живого мира был нарушен, когда С. Н. Виноградский в 1887 году открыл хемосинтезирующие бактерии - бесхлорофильные организмы, способные ассимилировать (т. е. превращать в органические соединения) углекислоту в темноте. Он был нарушен также, когда в 1883 году Энгельман открыл пурпурные бактерии, осуществляющие своеобразный фотосинтез, не сопровождающийся выделением кислорода. В свое время этот факт не был оценен в должной мере; между тем открытие хемосинтезирующих бактерий, ассимилирующих углекислоту в темноте, показывает, что ассимиляцию углекислоты нельзя считать специфической особенностью одного лишь фотосинтеза.

После 1940 года благодаря применению меченого углерода было установлено, что все клетки - растительные, бактериальные и животные - способны ассимилировать углекислоту, т. е. включать ее в состав молекул органических веществ; различны лишь источники, из которых они черпают необходимую для этого энергию.

Другой крупный вклад в изучение процесса фотосинтеза внес в 1905 году Блэкман, который обнаружил, что фотосинтез состоит из двух последовательных реакций: быстрой световой реакции и ряда более медленных, не зависящих от света этапов, названных им темповой реакцией. Используя свет высокой интенсивности, Блэкман показал, что фотосинтез протекает с одинаковой скоростью как при прерывистом освещении с продолжительностью вспышек всего в долю секунды, так и при непрерывном освещении, несмотря на то что в первом случае фотосинтетическая система получает вдвое меньше энергии. Интенсивность фотосинтеза снижалась только при значительном увеличении темнового периода. В дальнейших исследованиях было установлено, что скорость темновой реакции значительно возрастает с повышением температуры.

Следующая гипотеза относительно химической основы фотосинтеза была выдвинута ван Нилем, который в 1931 году экспериментально показал, что у бактерий фотосинтез может происходить в анаэробных условиях, не сопровождаясь выделением кислорода. Ван Ниль высказал предположение, что в принципе процесс фотосинтеза сходен у бактерий и у зеленых растений. У последних световая энергия используется для фотолиза воды (Н 2 0) с образованием восстановителя (Н), определенным путем участвующего в ассимиляции углекислоты, и окислителя (ОН) - гипотетического предшественника молекулярного кислорода. У бактерий фотосинтез протекает в общем так же, но донором водорода служит Н 2 S или молекулярный водород, и поэтому выделения кислорода не происходит.

Современные представления о фотосинтезе

По современным представлениям сущность фотосинтеза заключается в превращении лучистой энергии солнечного света в химическую энергию в форме АТФ и восстановленного никотинамидадениндинуклеотидфосфата (НАДФ · Н).

В настоящее время принято считать, что процесс фотосинтеза складывается из двух стадий, в которых активное участие принимают фотосинтезирующие структуры [показать] и светочувствительные пигменты клетки .

Фотосинтезирующие структуры

У бактерий фотосинтезирующие структуры представлены в виде впячивания клеточной мембраны, образуя пластинчатые органоиды мезосомы. Изолированные мезосомы, получаемые при разрушении бактерий, называются хроматофорами, в них сосредоточен светочувствительный аппарат.

У эукариотов фотосинтетический аппарат расположен в специальных внутриклеточных органоидах - хлоропластах, содержащих зеленый пигмент хлорофилл, который придает растению зеленую окраску и играет важнейшую роль в фотосинтезе, улавливая энергию солнечного света. Хлоропласты, подобно митохондриям, содержат также ДНК, РНК и аппарат для синтеза белка, т. е. обладают потенциальной способностью к самовоспроизведению. По размерам хлоропласты в несколько раз больше митохондрий. Число хлоропластов колеблется от одного у водорослей до 40 на клетку у высших растений.


В клетках зеленых растений помимо хлоропластов имеются и митохондрии, которые используются для образования энергии в ночное время за счет дыхания, как в гетеротрофных клетках.

Хлоропласты имеют шаровидную или уплощенную форму. Они окружены двумя мембранами - наружной и внутренней (рис. 1). Внутренняя мембрана укладывается в виде стопок уплощенных пузырьковидных дисков. Эта стопка называется граной.

Каждая грана состоит из отдельных слоев, расположенных наподобие столбиков монет. Слои белковых молекул чередуются со слоями, содержащими хлорофилл, каротины и другие пигменты, а также особые формы липидов (содержащих галактозу или серу, но только одну жирную кислоту). Эти поверхностно-активные липиды, по-видимому, адсорбированы между отдельными слоями молекул и служат для стабилизации структуры, состоящей из чередующихся слоев белка и пигментов. Такое слоистое (ламеллярное) строение граны, вероятнее всего облегчает перенос энергии в процессе фотосинтеза от одной молекулы к близлежащей.

В водорослях находится не более одной граны в каждом хлоропласте, а в высших растениях - до 50 гран, которые соединены между собой мембранными перемычками. Водная среда между гранами - это строма хлоропласта, которая содержит ферменты, осуществляющие "темновые реакции"

Пузырьковидные структуры, из которых состоит грана, называются тилактоидами. В гране от 10 до 20 тилактоидов.

Элементарная структурная и функциональная единица фотосинтеза мембран тилактоидов, содержащая необходимые светоулавливающие пигменты и и компоненты аппарата трансформации энергии, называется квантосомой, состоящей примерно из 230 молекул хлорофилла. Эта частица имеет массу порядка 2 х 10 6 дальтон и размеры около 17,5 нм.

Стадии фотосинтеза

Световая стадия (или энергетическая)

Темновая стадия (или метаболическая)

Место протекание реакции

В квантосомах мембран тилактоидов, протекает на свету.

Осуществляется вне тилактоидов, в водной среде стромы.

Начальные продукты

Энергия света, вода (Н 2 О), АДФ, хлорофилл

СО 2 , рибулозодифосфат, АТФ, НАДФН 2

Суть процесса

Фотолиз воды, фосфорилирование

В световой стадии фотосинтеза энергия света трансформируется в химическую энергию АТФ, а бедные энергией электроны воды переходят в богатые энергией электроны НАДФ· Н 2 . Побочным веществом, образующимся в ходе световой стадии, является кислород. Реакции световой стадии получили название "световых реакций".

Карбоксилирование, гидрирование, дефосфорилирование

В темновой стадии фотосинтеза протекают "темновые реакции" при которых наблюдается восстановительный синтез глюкозы из CO 2 . Без энергии световой стадии темновая стадия невозможна.

Конечные продукты

О 2 , АТФ, НАДФН 2

Богатые энергией продукты световой реакции - АТФ и НАДФ· Н 2 далее используются в темновой стадии фотосинтеза.

Взаимосвязь между световой и темновой стадиями можно выразить схемой

Процесс фотосинтеза эндергонический, т.е. сопровождается увеличением свободной энергии, поэтому требует значительного количества энергии, подведенной извне. Суммарное уравнение фотосинтеза:

6СО 2 + 12Н 2 О--->С 6 Н 12 О 62 + 6Н 2 О + 6О 2 + 2861 кДж/моль.

Наземные растения поглощают необходимую для процесса фотосинтеза воду через корни, а водные растения получают ее путем диффузии из окружающей среды. Необходимая для фотосинтеза углекислота диффундирует в растение через мелкие отверстия на поверхности листьев - устьица. Поскольку углекислота расходуется в процессе фотосинтеза, ее концентрация в клетке обычно несколько ниже, чем в атмосфере. Освобождающийся в процессе фотосинтеза кислород диффундирует наружу из клетки, а затем и из растения - через устьица. Образующиеся при фотосинтезе сахара также диффундируют в те части растения, где их концентрация ниже.

Для осуществления фотосинтеза растениям необходимо очень много воздуха, так как он содержит всего 0,03% углекислоты. Следовательно, из 10 000 м 3 воздуха можно получить 3 м 3 углекислоты, из которой в процессе фотосинтеза образуется около 110 г глюкозы. Обычно растения лучше растут при более высоком содержании в воздухе углекислоты. Поэтому в некоторых теплицах содержание CO 2 в воздухе доводят до 1-5%.

Механизм световой (фотохимической) стадии фотосинтеза

В реализации фотохимической функции фотосинтеза принимают участие солнечная энергия и различные пигменты: зеленые - хлорофиллы а и b, желтые - каротиноиды и красные или синие - фикобилины. Фотохимически активен среди этого комплекса пигментов только хлорофилл а. Остальные пигменты играют вспомогательную роль, являясь лишь собирателями световых квантов (своеобразные светособирающие линзы) и проводниками их к фотохимическому центру.

На основании способности хлорофилла эффективно поглощать солнечную энергию определенной длины волны в мембранах тилактоидов были выделены функциональные фотохимические центры или фотосистемы (рис. 3):

  • фотосистемa I (хлорофилл а ) - содержит пигмент 700 (Р 700) поглощающий свет с длиной волны около 700 нм, играет основную роль в образовании продуктов световой стадии фотосинтеза: АТФ и НАДФ · Н 2
  • фотосистема II (хлорофилл b ) - содержит пигмент 680 (Р 680), поглощающий свет с длиной волны 680 нм, играет вспомогательную роль восполняя за счет фотолиза воды утраченные фотосистемой I электроны

На 300-400 молекул светособирающих пигментов в фотосистемах I и II приходится только одна молекула фотохимически активного пигмента - хлорофилла а.

Поглощенный растением световой квант

  • переводит пигмент Р 700 из основного состояния в возбужденное - Р * 700 , в котором он легко теряет электрон с образованием положительной электронной дырки в виде Р 700 + по схеме:

    Р 700 ---> Р * 700 ---> Р + 700 + е -

    После чего молекула пигмента, потерявшая электрон, может служить акцептором электрона (способна принять электрон) и переходить в восстановленную форму

  • вызывает разложение (фотоокисление) воды в фотохимическом центре Р 680 фотосистемы II по схеме

    Н 2 О ---> 2Н + + 2е - + 1/2O 2

    Фотолиз воды называется реакцией Хилла. Электроны, образующиеся при разложении воды, первоначально акцептируются веществом, обозначаемым Q (иногда его называют цитохромом С 550 пo максимуму поглощения, хотя оно не является цитохромом). Затем от вещества Q через цепь переносчиков, похожую по составу на митохондриальную, электроны поставляются в фотосистему I для заполнения электронной дырки, образовавшейся в результате поглощения системой световых квантов, и восстановления пигмента Р + 700

Если такая молекула просто получит назад тот же электрон, то произойдет выделение световой энергии в виде тепла и флуоресценции (этим обусловлена флуоресценция чистого хлорофилла). Однако, в большинстве случаев, освободившийся отрицательно заряженный электрон акцептируется специальными железосерными белками (FеS-центр), а затем

  1. или транспортируется по одной из цепей переносчиков обратно к Р + 700 , заполняя электронную дырку
  2. или по другой цепи переносчиков через ферредоксин и флавопротеид к постоянному акцептору - НАДФ · Н 2

В первом случае происходит замкнутый циклический транспорт электрона, а во втором - нециклический.

Оба процесса катализируются одной и той же цепью переносчиков электронов. Однако при циклическом фотофосфорилировании электроны возвращаются от хлорофилла а снова к хлорофиллу а , тогда как при нециклическом фотофосфорилировании электроны переходят от хлорофилла b к хлорофиллу а .

Циклическое (фотосинтетическое) фосфорилирование Нециклическое фосфорилирование

В результате циклического фосфорилирования происходит образование молекул АТФ. Процесс связан с возвращением через ряд последовательных этапов возбужденных электронов на Р 700 . Возвращение возбужденных электронов на Р 700 приводит к высвобождению энергии (при переходе с высокого на низкий энергетический уровень), которая, при участии фосфорилирующей ферментной системы, аккумулируется в фосфатных связях АТФ, а не рассеивается в виде флуоресценции и тепла (рис.4.). Этот процесс называется фотосинтетическим фосфорилированием (в отличие от окислительного фосфорилирования, осуществляемого митохондриями);

Фотосинтетическое фосфорилирование - первичная реакция фотосинтеза - механизм образования химической энергии (синтеза АТФ из АДФ и неорганического фосфата) на мембране тилактоидов хлоропластов с использованием энергии солнечного света. Необходима для темновой реакции ассимиляции СО 2

В результате нециклического фосфорилирования происходит восстановление НАДФ + с образование НАДФ · Н. Процесс связан с передачей электрона ферредоксину, его восстановлением и дальнейшим переходом его к НАДФ + с последующим восстановление его до НАДФ · Н

В тилактоидах идут оба процесса, хотя второй более сложный. Он сопряжен (взаимосвязан) с работой фотосистемы II.

Таким образом, утраченные Р 700 электроны восполняются за счет электронов воды, разлагаемой под действием света в фотосистеме II.

а + в основное состояние, образуются, по-видимому, при возбуждении хлорофилла b . Эти высокоэнергетические электроны переходят к ферредоксину и затем через флавопротеин и цитохромы - к хлорофиллу а . На последнем этапе происходит фосфорилирование АДФ до АТФ (рис. 5).

Электроны, необходимые для возвращения хлорофилла в его основное состояние, поставляются, вероятно, ионами ОН - , образующимися при диссоциации воды. Некоторая часть молекул воды диссоциирует на ионы Н + и ОН - . В результате потери электронов ионы ОН - превращаются в радикалы (ОН), которые в дальнейшем дают молекулы воды и газообразного кислорода (рис. 6).

Этот аспект теории подтверждается результатами опытов с водой и CO 2 , меченными 18 0 [показать] .

Согласно этим результатам, весь газообразный кислород, выделяющийся при фотосинтезе, происходит из воды, а не из СО 2 . Реакции расщепления воды до сих пор еще подробно не изучены. Ясно, однако, что осуществление всех последовательных реакций нециклического фотофосфорилирования (рис. 5), в том числе возбуждение одной молекулы хлорофилла а и одной молекулы хлорофилла b , должно приводить к образованию одной молекулы НАДФ · Н, двух или более молекул АТФ из АДФ и Ф н и к выделению одного атома кислорода. Для этого необходимо по крайней мере четыре кванта света - по два для каждой молекулы хлорофилла.

Нециклический поток электронов от Н 2 О к НАДФ · Н 2 , происходящий при взаимодействии двух фотосистем и связывающих их электронно-транспортных цепей, наблюдается вопреки значениям редокс-потенциалов: Е° для 1/2O 2 /Н 2 О = +0,81 В, а Е° для НАДФ/НАДФ · Н = -0,32 В. Энергия света обращает поток электронов "вспять". Существенно то, что при переносе от фотосистемы II к фотосистеме I часть энергии электронов аккумулируется в виде протонного потенциала на мембране тилактоидов, а затем в энергию АТФ.

Механизм образования протонного потенциала в цепи переноса электронов и его использование на образование АТФ в хлоропластах сходен с таковым в митохондриях. Однако в механизме фотофосфорилирования имеются некоторые особенности. Тилактоиды представляют собой как бы вывернутые наизнанку митохондрии, поэтому направление переноса электронов и протонов через мембрану противоположно направлению его в митохондриальной мембране (рис.6). Электроны движутся к внешней стороне, а протоны концентрируются внутри тилактоидного матрикса. Матрикс заряжается положительно, а внешняя мембрана тилактоида - отрицательно, т. е. направление протонного градиента противоположно направлению его в митохондриях.

Другой особенностью является значительно большая доля рН в протонном потенциале по сравнению с митохондриями. Тилактоидный матрикс сильно закисляется, поэтому Δ рН может достигать 0,1-0,2 В, в то время как Δ Ψ составляет около 0,1 В. Общее значение Δ μ H+ > 0,25 В.

Н + -АТФ-синтетаза, обозначаемая в хлоропластах как комплекс "СF 1 +F 0 ", ориентирована тоже в противоположном направлении. Головка ее (F 1) смотрит наружу, в сторону стромы хлоропласта. Протоны выталкиваются через СF 0 +F 1 из матрикса наружу, и в активном центре F 1 образуется АТФ за счет энергии протонного потенциала.

В отличие от митохондриальной цепи в тилактоидной имеется, по-видимому, только два участка сопряжения, поэтому на синтез одной молекулы АТФ требуется вместо двух три протона, т. е. соотношение 3 Н + /1 моль АТФ.

Итак, на первой стадии фотосинтеза, во время световых реакций, в строме хлоропласта образуются АТФ и НАДФ · Н - продукты, необходимые для осуществления темновых реакций.

Механизм темновой стадии фотосинтеза

Темновые реакции фотосинтеза - это процесс включения углекислоты в органические вещества с образованием углеводов (фотосинтез глюкозы из СО 2). Реакции протекают в строме хлоропласта при участии продуктов световой стадии фотосинтеза - АТФ и НАДФ · Н2.

Ассимиляция диоксида углерода (фотохимическое карбоксилирование) представляет собой циклический процесс, который называется также пентозофосфатным фотосинтетическим циклом или циклом Кальвина (рис. 7). В нем можно выделить три основные фазы:

  • карбоксилирование (фиксация СО 2 рибулозодифосфатом)
  • восстановление (образование триозофосфатов при восстановлении 3-фосфоглицерата)
  • регенерация рибулозодифосфата

Рибулозо-5-фосфат (сахар, содержащий 5 атомов углерода, с фосфатным остатком у углерода в положении 5) подвергается фосфорилированию за счет АТФ, что приводит к образованию рибулозодифосфата. Это последнее вещество карбоксилируется путем присоединения СО 2 , по-видимому, до промежуточного шестиуглеродного продукта, который, однако, немедленно расщепляется с присоединением молекулы воды, образуя две молекулы фосфоглицериновой кислоты. Затем фосфоглицериновая кислота восстанавливается в ходе ферментативной реакции, для осуществления которой необходимо присутствие АТФ и НАДФ · Н с образованием фосфоглицеринового альдегида (трехуглеродный сахар - триоза). В результате конденсации двух таких триоз образуется молекула гексозы, которая может включаться в молекулу крахмала и таким образом откладываться про запас.

Для завершения этой фазы цикла в процессе фотосинтеза поглощается 1 молекула С0 2 и используются 3 молекулы АТФ и 4 атома Н (присоединенных к 2 молекулам НАД · Н). Из гексозофосфата путем определенных реакций пентозофосфатного цикла (рис. 8) регенерирует рибулозофосфат, который снова может присоединить к себе другую молекулу углекислоты.

Ни одну из описанных реакций - карбоксилирование, восстановление или регенерацию - нельзя считать специфичной только для фотосинтезирующей клетки. Единственное обнаруженное у них отличие заключается в том, что для реакции восстановления, в течение которой фосфоглицериновая кислота превращается в фосфоглицериновый альдегид, необходим НАДФ · Н, а не НАД · Н, как обычно.

Фиксация СО 2 рибулозодифосфатом катализируется ферментом рибулозодифосфаткарбоксилазой: Рибулозодифосфат + СО 2 --> 3-Фосфоглицерат Далее 3-фосфоглицерат восстанавливается с помощью НАДФ · Н 2 и АТФ до глицеральдегид-3-фосфата. Эта реакция катализируется ферментом - глицеральдегид-3-фосфат-дегидрогеназой. Глицеральдегид-3-фосфат легко изомеризуется в дигидроксиацетонфосфат. Оба триозофосфата используются в образовании фруктозобисфосфата (обратная реакция, катализируемая фруктозо-бисфосфат-альдолазой). Часть молекул образовавшегося фруктозобисфосфата участвует вместе с триозофосфатами в регенерации рибулозодифосфата (замыкают цикл), а другая часть используется для запасания углеводов в фотосинтезирующих клетках, как показано на схеме.

Подсчитано, что для синтеза одной молекулы глюкозы из СО 2 в цикле Кальвина требуется 12 НАДФ · Н + Н + и 18 АТФ (12 молекул АТФ расходуются на восстановление 3-фосфоглицерата, а 6 молекул - в реакциях регенерации рибулозодифосфата). Минимальное соотношение - 3 АТФ: 2 НАДФ · Н 2 .

Можно заметить общность принципов, лежащих в основе фотосинтетического и окислительного фосфорилирования, причем фотофосфорилирование представляет собой как бы обращенное окислительное фосфорилирование:

Энергия света является движущей силой фосфорилирования и синтеза органических веществ (S-Н 2) при фотосинтезе и, наоборот, энергия окисления органических веществ - при окислительном фосфорилировании. Поэтому именно растения обеспечивают жизнь животным и другим гетеротрофным организмам:

Углеводы, образующиеся при фотосинтезе, служат для построения углеродных скелетов многочисленных органических веществ растений. Азоторганические вещества усваиваются фотосинтезирующими организмами путем восстановления неорганических нитратов или атмосферного азота, а сера - восстановлением сульфатов до сульфгидрильных групп аминокислот. Фотосинтез в конечном итоге обеспечивает построение не только обязательных для жизни белков, нуклеиновых кислот, углеводов, липидов, кофакторов, но и многочисленных продуктов вторичного синтеза, являющихся ценными лекарственными веществами (алкалоиды, флавоноиды, полифенолы, терпены, стероиды, органические кислоты и т.д.).

Бесхлорофильный фотосинтез

Бесхлорофильный фотосинтез обнаружен у солелюбивых бактерий, имеющих фиолетовый светочувствительный пигмент. Этим пигментом оказался белок бактериородопсин, содержащий, подобно зрительному пурпуру сетчатки - родопсину, производное витамина А - ретиналь. Бактериородопсин, встроенный в мембрану солелюбивных бактерий, образует на этой мембране в ответ на поглощение ретиналем света протонный потенциал, преобразующийся в АТФ. Таким образом, бактериородопсин является бесхлорофильным преобразователем энергии света.

Фотосинтез и внешняя среда

Фотосинтез возможен только при наличии света, воды и диоксида углерода. КПД фотосинтеза не более 20% у культурных видов растений, а обычно он не превышает 6-7%. В атмосфере примерно 0,03% (об.) СО 2 , при повышении его содержания до 0,1% интенсивность фотосинтеза и продуктивность растений возрастают, поэтому целесообразно подкармливать растения гидрокарбонатами. Однако содержание СО 2 в воздухе выше 1,0% оказывает вредное действие на фотосинтез. За год только наземные растения усваивают 3% всего СО 2 атмосферы Земли, т. е. около 20 млрд. т. В составе синтезируемых из СО 2 углеводов аккумулируется до 4 · 10 18 кДж энергии света. Это соответствует мощности электростанции в 40 млрд кВт. Побочный продукт фотосинтеза - кислород - жизненно необходим для высших организмов и аэробных микроорганизмов. Сохранить растительный покров - значит сохранить жизнь на Земле.

Эффективность фотосинтеза

Эффективность фотосинтеза с точки зрения производства биомассы можно оценить через долю общей солнечной радиации, попадающей на определенную площадь за определенное время, которая запасается в органических веществах урожая. Продуктивность системы можно оценить по количеству органического сухого вещества, получаемого с единицы площади за год, и выразить в единицах массы (кг) или энергии (мДж) продукции, полученной с гектара за год.

Выход биомассы зависит, таким образом, от площади коллектора солнечной энергии (листьев), функционирующих в течение года, и числа дней в году с такими условиями освещенности, когда возможен фотосинтез с максимальной скоростью, что определяет эффективность всего процесса. Результаты определения доли солнечной радиации (в %), доступной растениям (фотосинтетически активной радиации, ФАР), и знание основных фотохимических и биохимических процессов и их термодинамической, эффективности позволяют рассчитать вероятные предельные скорости образования органических веществ в пересчете на углеводы.

Растения используют свет с длиной волны от 400 до 700 нм, т. е. на долю фотосинтетически активной радиации приходится 50% всего солнечного света. Это соответствует интенсивности на поверхности Земли 800-1000 Вт/м 2 за обычный солнечный день (в среднем). Усредненная максимальная эффективность превращения энергии при фотосинтезе на практике составляет 5-6%. Эти оценки получены на основе изучения процесса связывания СО 2 , а также сопутствующих физиологических и физических потерь. Одному молю связанного СО 2 в форме углевода соответствует энергия 0,47 МДж, а энергия моля квантов красного света с длиной волны 680 нм (наиболее бедный энергией свет, используемый в фотосинтезе) составляет 0,176 МДж. Таким образом, минимальное число молей квантов красного света, необходимое для связывания 1 моля СО 2 , составляет 0,47:0,176 = 2,7. Однако, поскольку перенос четырех электронов от воды для фиксации одной молекулы СО 2 требует не менее восьми квантов света, теоретическая эффективность связывания равна 2,7:8 = 33%. Эти расчеты сделаны для красного света; ясно, что для белого света эта величина будет соответственно ниже.

В наилучших полевых условиях эффективность фиксации в растениях достигает 3%, однако это возможно лишь в короткие периоды роста и, если пересчитать ее на весь год, то она будет где-то между 1 и 3%.

На практике в среднем за год эффективность фотосинтетического преобразования энергии в зонах с умеренным климатом составляет обычно 0,5-1,3%, а для субтропических культур - 0,5-2,5%. Выход продукта, который можно ожидать при определенном уровне интенсивности солнечного света и разной эффективности фотосинтеза, легко оценить из графиков, приведенных на рис. 9.

Значение фотосинтеза

  • Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом, волокнами и бесчисленными полезными химическими соединениями.
  • Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая.
  • Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных, в виде топлива и строительных материалов

Общее уравнение фотосинтеза :6CO 2 + 6 H 2 O ––– (свет, хлоропласты)–––> C 6 H 12 O 6 + 6 O 2 . В ходе этого процесса из веществ, бедных энергией – углекислого газа и воды – образуется углевод глюкоза (C 6 H 12 O 6) – богатое энергией вещество, кроме того образуется также молекулярный кислород. Очень образно описал это явление русский ученый, физиолог растений – К.А. Тимирязев.

Уравнению фотосинтеза соответствуют две парциальные реакции:

1)световая реакция или превращение энергии -процесс локализации в тилакойдах хлоропласта. ]

2)темновая реакция или превращение веществ -процесс локализации в строме хлоропласта.

3.Лист как орган фотосинтеза. Лист-орган фотосинтеза, который поглощает и запасает солнечную энергию и осуществляет газообмен с атмосферой. В среднем лист поглощает 80-85% фотосинтетически активной радиации (ФАР) и 25%энергии инфракрасных лучей. На фотосинтез расходуется 1.5-2% поглощенной ФАР, остальная энергия расходуется на испарение воды- транспирацию. Лист отличается плоской структурой и небольшой толщиной. Большое значение для эффективного улавливания света имеет архитектоника растений - пространственное расположение органов, те листья располагаются на растении не заслоняя друг друга. Особенности обеспечивающие эффективность фотосинтеза:1)наличие покровной ткани-эпидермиса, защищающего лист от излишней потери воды. Клетки нижнего и верхнего эпидермиса лишены хлоропластов и имеют крупные вакуоли. как линзы фокусируют свет на расположенную глубже хлорофильную ткань. Нижний и верхний эпидермис имеют устьица, через которые происходит диффузия СО2 внутрь листа.2)наличие специализированной фотосинтетической ткани-хлоренхимы. Основная хлорофилоносная ткань - палисадная паренхима, которая расположена на освещаемой части листа. В каждой клетке палисадной паренхимы находится 30-40 хлоропластов.3)наличие сильно развитой системы жилок проводящих путей, что обеспечивает быстрый отток ассимилятов и снабжение фотосинтезирующих клеток водой и необходимыми минеральными веществами. В зависимости от внешних условий при кот происходит формирование и функционирование листьев анатомическое строение их может меняться.



4.Структура и функции хлоропластов. Хлоропласты - пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. Обе мембраны имеют толщину около 7нм, они отделены друг от друга межмембранным пространством около 20-30нм. Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это- мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии.

В состав мембран, образующих граны, входит зеленый пигмент - хлорофилл. Именно здесь происходят световые реакции фотосинтеза - поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином.



Хлоропласты обладают известной автономией в системе клетки. В них имеются собственные рибосомы и набор веществ, определяющих синтез ряда собственных белков хлоропласта. Имеются также ферменты, работа которых приводит к образованию липидов, входящих в состав ламелл, и хлорофилла. Благодаря всему этому хлоропласты способны самостоятельно строить собственные структуры. Еще одной очень важной функцией является, усвоение углекислоты в хлоропласте или, как принято говорить, фиксация углекислоты, то есть включение ее углерода в состав органических соединений

5.Пигменты фотосинтетического аппарата (общ.характеристика) Способность растений осуществлять фотосинтез связана с наличием у них пигментов. Главнейшим из них является магнийсодержащий порфириновый пигмент - хлорофилл.

В природе встречается пять разных типов хлорофилла, которые незначительно различаются по своей молекулярной структуре. Хлорофилл а присутствует у всех водорослей и высших растений; хлорофилл b - у зеленых, харовых и эвглеповых и у высших растений; хлорофилл с - у бурых водорослей, золотистых, диатомей и динофлагеллат; хлорофилл d - у красных водорослей; хлорофилл е обнаружен лишь однажды, по-видимому, это хлорофилл с; наконец, различные виды бактериохлорофилла - у фотосинтезирующих бактерий. Для синезеленых и красных водорослей характерно наличие билипротеинов: фикоцианина и фикоэритрина. Наиболее хорошо изучен хлорофилл а. Молекула его состоит из четырех пиррольных колец, с азотом которых связан атом магния, а к одному из колец присоединен одноатомный ненасыщенный спирт фитол.

Молекула хлорофилла встроена в мембрану - погружена гидрофобной фитольной цепью в ее липидную часть. Чистый раствор хлорофилла а имеет максимум поглощения при 663 нм. В интактной, неповрежденной, нормально функционирующей клетке хлорофилл характеризуется еще максимумами поглощения при 672 и 683 нм. Высокая эффективность поглощения света хлорофиллами обусловлена наличием в их молекуле большого числа сопряженных двойных связей.

Фотосинтез

Фотосинез – это процесс
трансформации
поглощенной организмом
энергии света в
химическую энергию
органических
(неорганических)
соединений.
Главная роль восстановление СО2 до
уровня углеводов с
использованием энергии
света.

Развитие учения о фотосинтезе

Климе́нт Арка́дьевич Тимиря́зев
(22 мая (3 июня) 1843, Петербург- 28
апреля 1920, Москва) Научные труды
Тимирязева, посвящены вопросу о
разложении атмосферной углекислоты
зелёными растениями под влиянием
солнечной энергии. Изучение состава и
оптических свойств зелёного пигмента
растений (хлорофилла), его генезиса,
физических и химических условий
разложения углекислоты, определение
составных частей солнечного луча,
принимающих участие в этом явлении,
изучение количественного отношения
между поглощенной энергией и
произведённой работой.

Джозеф Пристли (13 марта
1733-6 февраля 1804) -
британский священникдиссентер, естествоиспытатель,
философ, общественный деятель.
Вошёл в историю прежде всего
как выдающийся химик,
открывший кислород и
углекислый газ

Пьер Жозеф Пельтье - (22 марта 1788 - 19 июля
1842) - французский химик и фармацевт, один из
основателей химии алкалоидов.
В 1817 году, вместе с Жозеф Бьенеме Каванту, он
выделил зелёный пигмент из листьев растений, который
они назвали хлорофиллом.

Алексей Николаевич Бах
(5 (17) марта 1857 - 13 мая,
1946) - советский биохимик и
физиолог растений. Высказал
мысль о том, что ассимиляция СО2
при фотосинтезе является
сопряженным окислительновосстановительным процессом,
происходящим за счет водорода и
гидроксила воды, причем кислород
выделяется из воды через
промежуточные перекисные
соединения.

Общее уравнение фотосинтеза

6 СО2 + 12 Н2О
С6Н12О6 + 6 О2 + 6 Н2О

У высших растений фотосинтез осуществляется в
специализированных клетках органоидов листьев –
хлоропластах.
Хлоропласты – это округлые, или дискообразные
тельца длиной 1-10 мкм, толщиной до 3 мкм. Содержание
их в клетках от 20 до 100.
Химический состав (% на сухую массу):
Белок - 35-55
Липиды – 20-30
Углеводы – 10
РНК – 2-3
ДНК – до 0,5
Хлорофилл – 9
Каротиноиды – 4,5

Строение Хлоропласта

10. Происхождение хлоропластов

Виды формирования хлоропластов:
Деление
Почкование
Ядерный путь
темнота
ядро
инициальная
частица
свет
проламиллярное
тело
пропластида
хлоропласт
схема ядерного пути

11. Онтогенез хлоропластов

12.

Хлоропласты - зелёные пластиды, которые
встречаются в клетках растений и водорослей.
Ультраструктура хлоропласта:
1. наружняя мембрана
2. межмембранное
пространство
3. внутренняя мембрана
(1+2+3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламела)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. плстоглобула (капля жира)

13. Пигменты фотосинтезирующих растений

хлорофиллы
фикобилины
Фикобилины
каротиноиды
флавоноидные
пигменты

14. Хлорофиллы

Хлорофи́лл -
зелёный пигмент,
обусловливающий
окраску хлоропластов
растений в зелёный
цвет. По химическому
строению
хлорофиллы -
магниевые комплексы
различных
тетрапирролов.
Хлорофиллы имеют
порфириновое
строение.

15.

Хлорофиллы
Хлорофилл «а»
(сине-зеленые
бактерии)
Хлорофилл «c»
(бурые водоросли)
Хлорофилл «b»
(высшие растения,
зеленые, харовые
водоросли)
Хлорофилл «d»
(красные водоросли)

16. Фикобилины

Фикобилины – это
пигменты,
представляющие собой
вспомогательные
фотосинтетические
пигменты, которые могут
передавать энергию
поглощенных квантов
света на хлорофилл,
расширяя спектр действия
фотосинтеза.
Открытые тетрапиррольные
структуры.
Встречаются у водорослей.

17. Каротиноиды

Структурная формула

18.

Каротиноиды – это
жирорастворимые
пигменты желтого,
красного и оранжевого
цвета. Придают
окраску большинству
оранжевых овощей и
фруктов.

19. Группы каротиноидов:

Каротины - жёлтооранжевый пигмент,
непредельный углеводород
из группы каротиноидов.
Формула С40H56. Нерастворим
в воде, но растворяется в
органических растворителях.
Содержится в листьях всех растений, а также в
корне моркови, плодах шиповника и др. Является
провитамином витамина А.
2.
Ксантофиллы - растительный пигмент,
кристаллизуется в призматических кристаллах
жёлтого цвета.
1.

20. Флавоноидные пигменты

Флавоноиды -это группа
водорастворимых природных
фенольных соединений.
Представляют собой
гетероциклические
кислородсодержащие
соединения преимущественно
желтого, оранжевого, красного
цвета. Они принадлежат к
соединениям С6-С3-С6 ряда -
в их молекулах имеются два
бензольных ядра, соединенных
друг с другом трехуглеродным
фрагментом.
Структура флавонов

21. Флавоноидные пигменты:

Антоцианы - природные вещества, красящие растения;
относятся к гликозидам.
Флавоны и флавонолы. Играют роль поглотителей УФлучей тем самым предохраняют хлорофилл и цитоплазму
от разрушения.

22. Стадии фотосинтеза

световая
Осуществляется в
гранах хлоропластов.
Протекает при наличии
света Быстрые < 10 (-5)
сек
темновая
Осуществляется в
бесцветной белковой строме
хлоропластов.
Для протекания свет
необязателен
Медленные ~ 10 (-2) сек

23.

24.

25. Световая стадия фотосинтеза

В ходе световой стадии фотосинтеза образуются
высокоэнергетические продукты: АТФ, служащий в
клетке источником энергии, и НАДФН, использующийся
как восстановитель. В качестве побочного продукта
выделяется кислород.
Общее уравнение:
АДФ + Н3РО4 + Н2О + НАДФ
АТФ + НАДФН + 1/2О2

26.

Спектры поглощения
ФАР: 380 – 710 нм
Каротиноиды: 400550 нм главный
максимум: 480 нм
Хлорофиллы:
в красной области спектра
640-700 нм
в синей - 400-450 нм

27. Уровни возбуждения хлорофилла

1 уровень. Связан с переходом на более высокий
энергетический уровень электронов в системе
сопряжения двух связей
2 уровень. Связан с возбуждением неспаренных электронов
четырех атомов азота и кислорода в порфириновом
кольце.

28. Пигментные системы

Фотосистема I
Состоит из 200 молекул
хлорофилла «а»,50
молекул кароиноидов и 1
молекулы пигмента
(Р700)
Фотосистема II
Состоит из 200 молекул
хлорофилла «а670», 200
молекул хлорофилла «b» и
одной молекулы пигмента
(Р680)

29. Локализация электрон и протон транспортных реакций в тилакоидной мембране

30. Нециклическое фотосинтетическое фосфорилирование (Z – схема, или схема Говинджи)

x
е
Фg е
Фф е
НАДФ
Пх
е
FeS
е
АДФ
Цит b6
е
II ФС
НАДФН
АТФ
е
I ФС
Цит f
е
е
Пц
е
Р680
hV
О2
е
Н2 О
Р700
hV
Фф – феофетин
Пx – пластохинон
FeS – железосерный белок
Цит b6 – цитохром
Пц – пластоционин
Фg – феродоксин
х – неизвестное прир.
соединение

31. Фотосинтетическое фосфорилирование

Фотосинтетическое фосфорилирование – это процесс
образования энергии АТФ и НАДФН при фотосинтезе с
использованием квантов света.
Виды:
нециклическое (Z-схема).Принимают участие две
пигментные системы.
циклическое. Принимает участие фотосистема I.
псевдоциклическое. Идет по типу нециклического, но не
наблюдается видимого выделения кислорода.

32. Циклическое фотосинтетическое фосфорилирование

е
АДФ
Фg
е
АТФ
Цитb6
е
e
Цитf
е
P700
hV
е
АДФ
АТФ
Цит b6 – цитохром
Фg – феродоксин

33. Циклический и нециклический транспорт электронов в хлоропластах

34.

Химизм фотосинтеза
Фотосинтез
осуществляется
путем
последовательного чередования двух фаз:
световой,
протекающей
с
большой
скоростью и не зависящей от температуры;
темновой, названной так потому, что для
происходящих в этой фазе реакций
световая энергия не требуется.

35. Темновая стадия фотосинтеза

В темновой стадии с участием АТФ и НАДФН
происходит восстановление CO2 до глюкозы (C6H12O6).
Хотя свет не требуется для осуществления данного
процесса, он участвует в его регуляции.

36. С3-фотосинтез, цикл Кальвина

Цикл Кальвина или восстановительный
пентозофосфатный цикл состоит из трёх стадий:
Карбоксилирования РДФ.
Восстановления. Происходит восстановление 3-ФГК до
3-ФГА.
Регенерация акцептора РДФ. Осуществляются в серии
реакций взаимопревращений фосфорилируемых сахаров с
различным числом углеродных атомов (триоз, тетроз,
пентоз, гексоз, и т.д.)

37. Общее уравнение цикла Кальвина

Н2СО (Р)
С=О
НО-С-Н + * СО2
Н-С-ОН
Н2СО (Р)
РДФ
Н2*СО (Р)
2 НСОН
СООН
3-ФГК
Н2*СО (Р)
2НСОН
СОО (Р)
1,3-ФГК
Н2*СО (Р)
2НСОН
С=О
Н
3-ФГА
Н2*СО (Р)
2С=О
НСОН
3-ФДА
конденсация, или
полимеризация
Н
Н2СО (Р)
Н2СО (Р)
С=О
С=О
С=О
НСОН
НОСН
НОСН
НОСН
Н*СОН
НСОН
Н*СОН
НСОН
НСОН
НСОН
Н2СО (Р)
Н2СОН
Н2СО (Р)
1,6-дифосфат- фруктозо-6глюкоза-6фруктоза
фосфат
фосфат
Н
С=О
НСОН
НОСН
Н*СОН
НСОН
Н2СОН
глюкоза

38. С4-фотосинтез (путь Хэтча – Слэка – Карпилова)

Осуществляется у растений с двумя типами хлоропласта.
Акцептором СО2 помимо РДФ может быть трех
углеродное соединение – фосфоэнол ПВК (ФЕП)
C4 –путь был впервые обнаружен
у тропических злаков. В работах
Ю.С.Карпилова, М.Хэтча, К.Слэка с
использованием меченого углерода
было показано, что первыми
продуктами фотосинтеза у этих
растений являются органические
кислоты.

39.

40. Фотосинтез по типу толстянковых

Характерно для растений
суккуленотов.В ночное время
фиксируют углерод в
органические кислоты по
преимуществу в яблочные. Это
происходит под действием
ферментов
пируваткарбокислазы. Это
позволяет в течении дня
держать устьица закрытыми и
таким образом сокращать
транспирацию. Этот тип
получил название САМфотосинтез.

41. САМ фотосинтез

При CAM фотосинтезе происходит разделение
ассимиляции CO2 и цикла Кальвина не в
пространстве как у С4, а во времени. Ночью в
вакуолях клеток по аналогичному
вышеописанному механизму при открытых
устьицах накапливается малат, днём при
закрытых устьицах идёт цикл Кальвина. Этот
механизм позволяет максимально экономить
воду, однако уступает в эффективности и С4, и
С3.

42.

43.

Фотодыхание

44. Влияние внутренних и внешних факторов на фотосинтез

Фотосинтез
значительно
изменяется из-за
влияния на него
комплекса часто
взаимодействующих
внешних и внутренних
факторов.

45. Факторы, влияющие на фотосинтез

1.
Онтогенетическое
состояние растения.
Максимальная
интенсивность
фотосинтеза наблюдается
во время перехода
растений от вегетации в
репродуктивную фазу. У
стареющих листьев
интенсивность
фотосинтеза значительно
падает.

46. Факторы, влияющие на фотосинтез

2. Свет. В темноте фотосинтез не происходит, так как
образующийся при дыхании углекислый газ выделяется из
листьев; с увеличением интенсивности света достигается
компенсационная точка при которой поглощение
углекислого газа при фотосинтезе и ее освобождение при
дыхании уравновешивают друг друга.

47. Факторы, влияющие на фотосинтез

3. Спектральный
состав света.
Спектральный
состав солнечного
света испытывает
некоторые
изменения в
течении суток и в
течении года.

48. Факторы, влияющие на фотосинтез

4. СО2.
Является основным
субстратом фотосинтеза и от
его содержания зависит
интенсивность этого процесса.
В атмосфере содержится
0,03% по объему; увеличение
объема углекислого газа от 0,1
до 0,4% увеличивает
интенсивность фотосинтеза до
определенного предела, а
затем сменяется
углекислотным насыщением.

49. Факторы, влияющие на фотосинтез

5.Температура.
У растений умеренной
зоны оптимальная
температура для
фотосинтеза
является 20-25; у
тропических – 2035.

50. Факторы, влияющие на фотосинтез

6. Содержание воды.
Снижение обезвоженности тканей более чем на 20%
приводит к уменьшению интенсивности фотосинтеза и к
его дальнейшему прекращению, если потеря воды будет
более 50%.

51. Факторы, влияющие на фотосинтез

7. Микроэлементы.
Недостаток Fe
вызывает хлороз и
влияет на активность
ферментов. Mn
необходим для
освобождения
кислорода и для
усвоения углекислого
газа. Недостаток Cu и
Zn снижает фотосинтез
на 30%

52. Факторы, влияющие на фотосинтез

8.Загрязняющие
вещества и
химические
препараты.
Вызывают
снижение
фотосинтеза.
Наиболее
опасные
вещества: NO2,
SO2, взвешенные
частицы.

53. Суточный ход фотосинтеза

При умеренной дневной температуре и достаточной
влажности дневной ход фотосинтеза примерно
соответствует изменению интенсивности солнечной
инсоляции. Фотосинтез, начинаясь утром с восходом
солнца, достигает максимума в полуденные часы,
постепенно снижается к вечеру и прекращается с заходом
солнца. При повышенной температуре и уменьшении
влажности максимум фотосинтеза сдвигается на ранние
часы.

54. Вывод

Таким образом фотосинтез – единственный процесс на
Земле, идущий в грандиозных масштабах, связанный с
превращением энергии солнечного света в энергию химических
связей. Эта энергия, запасенная зелеными растениями,
составляет основу для жизнедеятельности всех других
гетеротрофных организмов на Земле от бактерий до человека.
Наименование параметра Значение
Тема статьи: Суммарное уравнение фотосинтеза
Рубрика (тематическая категория) Образование

Фотосинтез - ϶ᴛᴏ процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединœений.

Процесс фотосинтеза выражают суммарным уравнением:

6СО 2 + 6Н 2 О ® С 6 Н 12 О 6 + 6О 2 .

На свету в зелœеном растении из предельно окисленных веществ - диокси­да углерода и воды образуются органические вещества, и высво­бождается молекулярный кислород. В процессе фотосинтеза восстанавливаются не только СО 2 , но и нитраты или сульфаты, а энергия должна быть направлена на различные эндэргонические процессы, в т.ч. на транспорт веществ.

Общее уравнение фотосинтеза должна быть представлено в виде:

12 Н 2 О → 12 [Н 2 ] + 6 О 2 (световая реакция)

6 СО 2 + 12 [Н 2 ] → С 6 Н 12 О 6 + 6 Н 2 О (темновая реакция)

6 СО 2 + 12 Н 2 О → С 6 Н 12 О 6 + 6 Н 2 О + 6 О 2

или в расчете на 1 моль СО 2:

СО 2 + Н 2 О СН 2 О + О 2

Весь кислород, выделяемый при фотосинтезе, происходит из воды. Вода в правой части уравнения не подлежит сокращению, так как ее кислород происходит из СО 2 . Методами меченых атомов было получено, что Н 2 О в хлоропластах неоднородна и состоит из воды, поступающей из внешней среды и воды, образовавшейся в процессе фотосинтеза. В процессе фотосинтеза используются оба типа воды. Доказательством образования О 2 в процессе фотосинтеза служат работы голландского микробиолога Ван Ниля, который изучал бактериальный фотосинтез, и пришел к выводу, что первичная фотохимическая реакция фотосинтеза состоит в диссоциации Н 2 О, а не разложении СО 2 . Способные к фотосинтетической ассимиляции СО 2 бактерии (кроме цианобактерий) используют в качестве восстановителœей Н 2 S, Н 2 , СН 3 и другие, и не выделяют О 2 . Такой тип фотосинтеза принято называть фоторедукцией:

СО 2 + Н 2 S → [СН 2 О] + Н 2 О + S 2 или

СО 2 + Н 2 А → [СН 2 О] + Н 2 О + 2А,

где Н 2 А – окисляет субстрат, донор водорода (у высших растений - ϶ᴛᴏ Н 2 О), а 2А - ϶ᴛᴏ О 2 . Тогда первичным фотохимическим актом в фотосинтезе растений должно быть разложение воды на окислитель [ОН] и восстановитель [Н]. [Н] восстанавливает СО 2 , а [ОН] участвует в реакциях освобождения О 2 и образования Н 2 О.

Солнечная энергия при участии зелœеных растений и фотосинтезирующих бактерий преобразуется в свободную энергию органических соединœений. Для осуществления этого уникального процесса в ходе эволюции был создан фо­тосинтетический аппарат, содержащий: I) набор фотоактивных пигментов, способных поглощать электромагнитное излучение определœенных областей спектра и запасать эту энергию в виде энергии электронного возбуждения, и 2) специальный аппарат преобразования энергии электронного возбуждения в разные формы химической энергии. Прежде всœего эторедокс-энергия, свя­занная с образованием высоковосстановленных соединœений, энергия электрохимического потенциала, обусловленная образованием электрических и про­тонных градиентов на сопрягающей мембране (Δμ H +),энергия фосфатных свя­зей АТФ и других макроэргических соединœений, которая затем преобразуется в свободную энергию органических молекул.

Все эти виды химической энергии бывают использованы в процессе жизнедеятельности для поглощения и трансмембранного переноса ионов и в большинстве реакций метаболизма, ᴛ.ᴇ. в конструктивном обмене.

Способность использовать солнечную энергию и вводить ее в биосферные процессы и определяет ʼʼкосмическуюʼʼ роль зелœеных растений, о которой писал великий русский физиологК.А. Тимирязев.

Процесс фотосинтеза представляет собой очень сложную систему по про­странственной и временной организации. Использование высокоскоростных методов импульсного анализа позволили установить, что процесс фотосинте­за включает различные по скорости реакции - от 10 -15 с (в фемтосœекундном интервале времени протекают процессы поглощения и миграции энергии) до 10 4 с (образование продуктов фотосинтеза). Фотосинтетический аппарат вклю­чает структуры с размерами от 10 -27 м 3 на низшем молекулярном уровне до 10 5 м 3 на уровне посœевов.

Принципиальная схема фотосинтеза. Весь сложный комплекс реакций, со­ставляющих процесс фотосинтеза, должна быть представлен принципиальной схемой, в которой отображены основные стадии фотосинтеза и их сущность. В современной схеме фотосинтеза можно выделить четыре стадии, которые различаются по природе и скорости реакций, а также по значению и сущно­сти процессов, происходящих на каждой стадии:

I стадия – физическая. Включает фотофизические по природе реакции поглощения энергии пигментами (П), запасания ее в виде энергии электрон­ного возбуждения (П*) и миграции в реакционный центр (РЦ). Все реакции чрезвычайно быстрые и протекают со скоростью 10 -15 - 10 -9 с. Первичные ре­акции поглощения энергии локализованы в светособирающих антенных комп­лексах (ССК).

II стадия - фотохимическая. Реакции локализованы в реакционных цент­рах и протекают со скоростью 10 -9 с. На этой стадии фотосинтеза энергия элек­тронного возбуждения пигмента (П (РЦ)) реакционного центра используется для разделœения зарядов. При этом электрон с высоким энергетическим потен­циалом передается на первичный акцептор А, и образующаяся система с разделœенными зарядами (П (РЦ) - А) содержит определœенное количество энер­гии уже в химической форме. Окисленный пигмент П (РЦ) восстанавливает свою структуру за счёт окисления донора (Д).

Происходящее в реакционном центре преобразование одного вида энергии в другой представляет собой центральное событие процесса фотосинтеза, требу­ющее жестких условий структурной организации системы. Сегодня молекулярные модели реакционных центров растений и бактерий в основном известны. Установлено их сходство по структурной организации, что свидетель­ствует о высокой степени консервативности первичных процессов фотосинтеза.

Образующиеся на фотохимической стадии первичные продукты (П * , А -) очень лабильны, и электрон может вернуться к окисленному пигменту П * (процесс рекомбинации) с бесполезной потерей энергии. По этой причине необходи­ма быстрая дальнейшая стабилизация образованных восстановленных продук­тов с высоким энергетическим потенциалом, что осуществляется на следу­ющей, III стадии фотосинтеза.

III стадия - реакции транспорта электронов. Цепь переносчиков с раз­личной величиной окислительно-восстановительного потенциала (Е n ) обра­зует так называемую электрон-транспортную цепь (ЭТЦ). Редокс-компоненты ЭТЦ организованы в хлоропластах в виде трех базовых функциональных ком­плексов - фотосистемы I (ФСI), фотосистемы II (ФСII), цитохром b 6 f -комп­лекса, что обеспечивает высокую скорость электронного потока и возмож­ность его регуляции. В результате работы ЭТЦ образуются высоковосстанов­ленные продукты: восстановленный ферредоксин (ФД восст) и НАДФН, а так­же богатые энергией молекулы АТФ, которые используются в темновых реак­циях восстановления СО 2 , составляющих IV стадию фотосинтеза.

IV стадия - ʼʼтемновыеʼʼ реакции поглощения и восстановления углекислоты. Реакции проходят с образованием углеводов, конечных продуктов фотосинте­за, в форме которых запасается солнечная энергия, поглощенная и преобразо­ванная в ʼʼсветовыхʼʼ реакциях фотосинтеза. Скорость ʼʼтемновыхʼʼ энзиматических реакций – 10 -2 - 10 4 с.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, весь ход фотосинтеза осуществляется при взаимодействии трех пото­ков - потока энергии, потока электронов и потока углерода. Сопряжение трех потоков требует четкой координации и регуляции составляющих их реакций.

Суммарное уравнение фотосинтеза - понятие и виды. Классификация и особенности категории "Суммарное уравнение фотосинтеза" 2017, 2018.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

6СО 2 + 6Н 2 О + Qсвета → С 6 Н 12 О 6 + 6О 2 .

Фотосинтез – процесс, при котором происходит поглощение электромагнитной энергии солнца хлорофиллом и вспомогательными пигментами и превращение её в химическую энергию, поглощение углекислого газа из атмосферы, восстановление его в органические соединения и возвращение кислорода в атмосферу.

В процессе фотосинтеза из простых неорганических соединений (СО 2 , Н 2 О) строятся различные органические соединения. В результате происходит перестройка химических связей: вместо связей С – О и Н – О возникают связи C – C и C – H, в которых электроны занимают более высокий энергетический уровень. Таким образом, богатые энергией органические вещества, которыми питаются и за счет которых получают энергию (в процессе дыхания) животные и человек, первоначально создаются в зеленом листе. Можно сказать, что практически вся живая материя на Земле является результатом фотосинтетической деятельности.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С0 2 , из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, - это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Фотосинтез включает как световые, так и темновые реакции. Был проведен ряд экспериментов, доказывающих, что в процессе фотосинтеза происходят не только реакции, идущие с использованием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующие доказательства существования темновых реакций в процессе фотосинтеза:

1) фотосинтез ускоряется с повышением температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Особенно резко зависимость фотосинтеза от температуры проявляется при высоких интенсивностях света. По-видимому, в этом случае скорость фотосинтеза лимитируется именно темновыми реакциями;

2) эффективность использования энергии света в процессе фотосинтеза оказалась выше при прерывистом освещении. При этом для более эффективного использования энергии света длительность темновых промежутков должна значительно превышать длительность световых.

Пигменты фотосинтеза

Для того чтобы свет мог оказывать влияние на растительный организм и, в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами-пигментами. Пигменты - это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными.

Пигменты, сконцентрированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины .

К группе хлорофиллов относят органические соединения, которые содержат 4 пиррольных кольца, соединённых атомами магния и имеющие зелёную окраску.

В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших растений содержатся хлорофиллы а и b. Хлорофилл с обнаружен в диатомовых водорослях, хлорофилл d - в красных водорослях.

Основными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофиллы для бактерий. Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего русского ботаника М.С. Цвета (1872-1919). Он разработал новый хроматографический метод разделения веществ и выделил пигменты листа в чистом виде.

Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкое применение. М.С. Цвет пропускал вытяжку из листа через стеклянную трубку, заполненную порошком - мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдельные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат хлорофилл а и хлорофилл b, а также каротиноиды (каротин, ксантофилл и др.). Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хорошо растворимы в органических растворителях. Хлорофиллы а и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, а хлорофилл b - желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом b.

Каротиноиды - это желтые и оранжевые пигменты алифатического строения, производные изопрена. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротинойды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента - каротин (оранжевый) и ксантофилл (желтый). В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплексов с белками. Каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются.

Фикобилины - красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Исследования показали, что красные водоросли и цианобактерий наряду с хлорофиллом а содержат фикобилины. В основе химического строения фикобилинов лежат четыре пиррольные группировки.

Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин - это окисленный фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). Связь между фикобилинами и белками разрушается только кислотой.

Фикобилины поглощают лучи в зеленой и желтой частях солнечного спектра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495- 565 нм, а фикоцианин - 550- 615 нм. Сравнение спектров поглощения фикобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления организмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация). Как известно, красные лучи, соответствующие основной линии поглощения хлорофилла, поглощаются, проходя через толщу воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами.

Свойства хлорофилла

Все хлорофиллы являются магниевыми солями пиррола. В центре молекулы хлорофилла находятся магний и четыре пиррольных кольца, соединенные друг с другом метановыми мостиками.

По химическому строению хлорофиллы - сложные эфиры дикарбоновой органической кислоты - хлорофиллина и двух остатков спиртов - фитола и метилового.

Важнейшей частью молекулы хлорофилла является центральное ядро. Оно состоит из четырех пиррольных пятичленных колец, соединенных между собой углеродными мостиками и образующих большое порфириновое ядро с атомами азота посередине, связанными с атомом магния. В молекуле хлорофилла есть дополнительное циклопентаноновое кольцо, которое содержит карбонильную, а также карбоксильную группы, связанные эфирной связью с метиловым спиртом. Наличие в порфириновом ядре конъюгированной по кругу системы десяти двойных связей и магния обусловливает характерный для хлорофилла зеленый цвет.

Хлорофилл в отличается от хлорофилла а только тем, что вместо метальной группы во втором пиррольном кольце имеет альдегидную группу СОН. Хлорофилла имеет сине-зеленую окраску, а хлорофилл в -- светло-зеленую. Адсорбируются они в разных слоях хроматограммы, что свидетельствует о разных химических и физических свойствах. По современным представлениям, биосинтез хлорофилла в идет через хлорофилл а.

Флуоресценция - это свойство многих тел под влиянием падающего света, в свою очередь, излучать свет: при этом длина волны излучаемого света обычно больше длины - волны возбуждающего света. Одним из важнейших свойств хлорофиллов является их ярко выраженная способность к флуоресценции, которая интенсивна в растворе и угнетена в хлорофилле, содержащемся в тканях листьев, в пластидах. Если смотреть на раствор хлорофилла в лучах света, проходящего через него, то он кажется изумрудно-зеленым, если же рассматривать его в лучах отраженного света, то он приобретает красную окраску - это явление флуоресценции.

Хлорофиллы различаются по спектрам поглощения, при этом у хлорофилла b по сравнению с хлорофиллом а полоса поглощения в красной области спектра несколько смещена в сторону коротковолновых лучей, а в сине-фиолетовой области максимум поглощения смещен в сторону длинноволновых (красных) лучей.